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Main Results

• Input: Elements of an underlying frequency 

vector 𝑥 ∈ ℤ𝑛, which arrive sequentially one at a 

time (worst-case, fixed in advance).

• Output: At the end of the stream, 𝒜 outputs an 

approximation of a given function of the stream.

• Goal: 𝒜 should use space sublinear in the length 

𝑚 of the input stream and universe size 𝑛.

Standard Streaming Model Adversarially Robust Streaming

• Input: Elements of a stream, which arrive 

sequentially and adversarially.

• Output: At each time 𝑡, 𝒜 receives an update 𝑢𝑡, 

updates its internal state, and returns a current 

estimate 𝑟𝑡 , which is recorded by the adversary.

 “Future updates may depend on previous estimates”

Overview of our Approach

Linear Sketches

• A linear sketch is an algorithm that

1. Samples a sketching matrix 𝐴 ∈ ℝ𝑟×𝑛 
and maintains 𝐴𝑥 throughout the stream 

(typically 𝑟 ≪ 𝑛).

2. Returns 𝑓 𝐴𝑥  for some estimator 𝑓.

• Lower bounds are often proven by selecting a 

pair of hard distributions 𝔇1 and 𝔇2 which 

exhibit a ”gap” for the problem of interest.

• Then, show that 𝑑𝑇𝑉 𝐴𝑥, 𝐴𝑦  is small when 𝐴 

has 𝑟 rows.

• For many problems, (e.g. operator norm, norm 

estimation, etc), the hard distributions 𝔇1 and 𝔇2 

are chosen to be Gaussians (or somewhat “near” 

Gaussian).

• Example:  For the problem of estimating 𝑥
2

2
, 

pick 𝔇1 =  𝒩 0, 𝐼𝑛  and 𝔇2 =  𝒩 0, (1 + 𝜖)𝐼𝑛 . 

WLOG, 𝐴 has orthonormal rows. Then, 𝐴𝑥 ∼ 
𝒩 0, 𝐼𝑟 , 𝐴𝑦 ∼ 𝒩 0, 1 + 𝜖 𝐼𝑟 , so 𝐴 must have 

𝑟 = Ω
1

𝜖2 log 1/𝛿)  rows to distinguish these.

• Unfortunately, none of these lower bounds 

translate to the streaming model!

• Question: Is it possible to lift linear sketch lower 

bounds for continuous inputs to obtain linear 

sketch lower bounds for discrete inputs?

Dimension Lower Bounds

Adaptive Attack for Linear Sketches

• Linear sketches for 𝐹𝑝 estimation (𝑝 > 0) are “not 

robust” to adversarial attacks, i.e. require Ω(𝑛) 

dimension [HW13]. 

• High-level intuition: suppose the adversary 

knows the sketch matrix 𝐴: then, a hard 

distribution is to query 𝑥 ∈ ker(𝐴) or 𝑥 = 0𝑛, 

each with probability ½. 

• Thus, the adversary will aim to learn the 

approximate rowspace 𝑅(𝐴).

• Start with 𝑉1 = ∅.

1. Correlation finding: Find vectors weakly 

correlated with 𝐴 orthogonal to 𝑉𝑖−1.

2. Boosting: Use these vectors to find 

strongly correlated vector 𝑣.

3. Progress: Set 𝑉𝑖 = span(𝑉𝑖−1, 𝑣).

• Drawback: All queries are drawn from 

(continuous) Gaussian distributions with 

appropriate covariance, and the analysis heavily 

relies on rotational invariance. This lower bound 

does not directly translate to the adversarial 

streaming setting! 

• Question: Does there exist a sublinear space 

adversarially robust 𝐹𝑝 estimation linear sketch in 

a finite precision stream?

Theorem (Lifting Framework): Suppose that 

– 𝑋 ∼ 𝐷(0, 𝑆𝑇𝑆) and 𝑌 ∼ 𝑁(0, 𝑆𝑇𝑆), 𝑍 is an 

arbitrary integer distribution

–  𝑓 satisfies Pr
𝑥∼𝑋+𝑍,𝑦∼𝑌+𝑍

𝑓 𝑥 ≠ 𝑓 𝑦 ≤
𝛿

3
.

–  𝑔 𝐴𝑥 = 𝑓 𝑥  for 𝑥 ∼ 𝑋 + 𝑍 w.p. 1 −
𝛿
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– 𝐴 ∈ ℝ𝑟×𝑛 has polynomially-bounded integer 

entries and the singular values of 𝑆𝑇𝑆 are 

sufficiently large

Then, there is 𝐴′ ∈ ℝ4𝑟×𝑛 and estimator ℎ such that 

ℎ 𝐴′𝑦 = 𝑓 𝑦  w.p. 1 − 𝛿 for y ∼ 𝑌 + 𝑍.

• Let 𝒟𝐿,𝑆 denote the discrete Gaussian distribution 

on support 𝐿 and with covariance matrix 𝑆𝑇𝑆.

• Let 𝑥 ∼ 𝒟ℤ𝑛, 𝑆 , 𝑦 ∼ 𝒟𝐴ℤ𝑛, 𝑆𝐴𝑇 , z ∼ 𝑁 0, 𝑆𝑇𝑆

1.  Show 𝐝𝐓𝐕 𝑨𝒙, 𝒚  is small on 𝑨ℤ𝐧.

 Theorem. (Sufficient condition for small 

distributional gap [AR16] ) Suppose that 𝜎𝑛(𝑆) >

𝜆max(ℒ⊥ 𝐴 )
ln 2𝑛 1+

1

𝜀

𝜋
, then

1 − 2𝜀 ≤
𝜌𝐴𝑥 𝑠

𝜌𝑦 𝑠
≤ 1 + 2𝜀,

where 𝜌 denotes the corresponding PMF. 

2. Let 𝜼 be uniform noise in unit cell of 𝑨ℤ𝒏

• WLOG algorithm sees 𝐴𝑥 + 𝜂 (round in post-

processing), so should also work on 𝐴𝑧.

Distribution of 𝐴𝑥 + 𝜂 Distribution of 𝐴𝑧

Distribution of 𝑦 + 𝜂 𝑁(0, 𝐴𝑇𝑆𝑇𝑆𝐴).

≈1+1/poly(𝑛)[AR16]

≈1+1/poly(𝑛)

Design a pre-
processing for A to 

satisfy this condition 
by adding 𝑂(𝑟) rows
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